Prepared To Design For ZNE?

AIA
Los Angeles
Prepared to Design for ZNE?

• **John Zinner, LEED Fellow** – Principal & Founder, Zinner Consultants
• **Lisa Matthissen, FAIA** – National Sustainability Design Director, HGA and Chair, AIA|CC Committee On The Environment (COTE)
 • **Dan Brunn, AIA** – Founding Principal, Dan Brunn Architecture
• **Moe Fakih, LEED AP (O+M, RATER, QAD), CCP, GBP, BPI, AT TECH, WELL AP** – Vice President, VCA Green

with moderator **Ric. Abramson, FAIA** – Founder & Firm Principal, WORKPLAYS studio*architecture
Overview

7:30-8:00AM Sign-in for 2 CES Learning Units and coffee in the Louis Poulsen showroom

Introduction
Ric. Abramson, FAIA – Founder & Firm Principal, WORKPLAYS studio*architecture

ZNE Requirements and Regulations: An overview, how did we get here and where are we now?
John Zinner, LEED Fellow – Principal & Founder, Zinner Consultants

ZNE Resources: What tools are there to study and predict energy use for low-rise residential projects?
Lisa Matthissen, FAIA – National Sustainability Design Director, HGA & Chair, AIA|California Committee On The Environment (COTE)

ZNE Designing for the Environment: How do we get there?
Dan Brunn, AIA – Founding Principal, Dan Brunn Architecture

ZNE Tools & Implementation: How do we integrate it into the project?
Moe Fakih, LEED AP (O+M, RATER, QAD), CCP, GBP, BPI, AT TECH, WELL AP – Vice President, VCA Green

General Panel Discussion
with moderator Ric. Abramson, FAIA – Founder & Firm Principal, WORKPLAYS studio*architecture

Q&A
Ric. Abramson, FAIA
Founder & Firm Principal, WORKPLAYS studio*architecture
100% of all low-rise residential properties will be ZERO NET ENERGY beginning in 2020….not
What is a zero-net energy (ZNE) building?

A ZNE building is highly energy efficient and produces as much energy onsite through clean, renewable resources as it consumes over the course of a year.
Why ZNE?

Optimized building performance
Lower net energy costs and higher resale value
Highest architectural, mechanical, and environmental leadership
Comfortable and productive environment for working, learning and living
Makes communities stronger, resilient and energy independent
John Zinner, LEED Fellow
Principal & Founder, Zinner Consultants
Prepared to Design for ZNE?

John S. Zinner
Zinner Consultants
October 11, 2018
Lingo

- **ZNE, ZE** = Zero Net Energy, measured on annual basis
- **ZER** = Zero Energy Ready
- **All Electric** = To meet climate goals, buildings must be all electric powered by 100% renewable

- **Site Energy** = Energy consumed on site
- **Source Energy** = Site + energy to produce & distribute electricity
- **Time Dependent Valuation** = Minimizing peak energy use prioritized
Lingo 2

- **Prescriptive Compliance Path** = Implement required list
- **Performance Compliance Path** = Building performance using energy model
- **LCA** = Life Cycle Assessment
- **Passive Solar** = Comfort & efficiency through building design
- **Active Solar** = Solar water heating & power
 - **PV** = Photovoltaic solar electricity
 - **DHW** = Solar domestic hot water
 - Some solar panels address both
Lingo 3

- **CPUC** = California Public Utilities Commission
- **CEC** = California Energy Commission
- **HERS** = Home Energy Rating System
- **Cx** = Commissioning
- **CxA** = Commissioning Agent
California ZNE Policy

• Adopted 2008
 – ZNE in 2020: All low-rise residential (3 stories & under)
 – ZNE in 2030: All commercial & mid/high-rise residential

• Must be cost effective by law
Title 24 2019, Part 6 SFH Req.

- ZNE **not** cost effective
- PV
 - Amount based on building/unit size & number of bedrooms
- Solar DHW preheat
 - 20% net solar fraction Climate Zones 1-9
 - 35% NSF Climate Zones 10-16
- Additional HERS testing
T24 2019, Part 6 SFH Costs & Benefits

• T24 2019 vs. T24 2016 single-family home with PV
 – Energy use - 53%
 – Construction cost + $9,500
 – Operating cost - $19,000 over 30 years
 – 30-year mortgage + $40/month
 – Utility costs - $80/month

• Exception
 – Santa Monica, Berkeley require SFH ZNE as of T24 2016 ("reach" code)
Design Options

• Meet State code
 – T24 2019, Part 6, Building Energy Efficiency Standards
 – Takes effect January 1, 2020
 – Updated every 3 years

• Design ZNE or zero carbon buildings now

• Minimize water use
 – 20% of CA energy use for water
 – Not part of T24 or ZNE calculation
The Climate Challenge

- New UN Climate Report: 11 years to save the planet
- Global Weirding Not Warming: Intensification of weather (kudos to Amory Lovins, RMI)
- Resilience: Future proofing buildings for climate change
Lisa Matthissen, FAIA
National Sustainability Design Director, HGA &
Chair, AIA|CC Committee On The Environment (COTE)
ZERO NET ENERGY PRIMER

The Cottle House
San Jose, CA
One Sky Homes
2012
American Institute of Architects, California Council

ZERO NET ENERGY PRIMER

ACKNOWLEDGEMENTS

The concept for this document came from members of the American Institute of Architects, California Council (AIACC), who are embracing the architect’s role in meeting California’s ZNE goals. The AIACC Board of Directors lends its enthusiastic support of the work done by Ann V, Edminster and Pacific Gas and Electric Company (PG&E). The effort was funded by California utility customers and administered by PG&E under the auspices of the California Public Utilities Commission.

The author would like to acknowledge the generous contributions of time and expertise by Rick Chitwood, Gary Klein, Gina Rodda, Ted Tiffany, and Larry Weingarten; the equally valuable contributions and oversight by PG&E’s project manager, Bill Burke; and the exceptional talents and dedication of designer Debra Turner and architect-illustrator Steven Lee, which have made this Primer immensely more valuable. Many thanks also to the architects and photographers who contributed photos.

TABLE OF CONTENTS

Introduction.. 7
Definitions and the Energy Code................................. 8
Photovoltaics and Batteries... 10
Design Principles .. 11
Walls and Roof Assemblies 13
Air Leakage Control .. 15
Fenestration... 17
Heating and Cooling ... 18
Water Heating .. 20
Electric Loads .. 22
Top 10 Resources ... 22
Keys to Success ... 23
In 2016, the Net Zero Energy Coalition documented 3,137 zero-energy homes in California — 38% of all units in the US and Canada combined.
A high-quality enclosure is the bedrock of efficient construction, thus well-designed, well-detailed, and well-constructed wall and roof assemblies are critical to achieving ZNE. Key elements in high-performance assembly design include the framing, cavity insulation, exterior insulation, barriers, and air leakage control. Each of these elements is discussed below, and extensive relevant resources are listed on page 16.

FRAMING

Framing acts as a “thermal bridge” between interior and exterior surfaces; incorporating “advanced framing” or “optimum value engineering” features will reduce thermal bridging, thereby improving thermal performance while also saving the builder money on lumber. Although only a few specific advanced framing measures (e.g., 24” o.c. framing instead of 16”) can be modeled in Title 24 software, all of them will reduce your project’s framing factor, improving operating energy performance. Several advanced framing references are listed in the RESOURCES section on page 16.

Raised-heel trusses are another particularly valuable efficiency measure; while they require a bit more lumber, they allow the full depth of insulation to be installed all the way to the edge of the roof.

Title 24-2019 offers two roofattic prescriptive options, vented (top) and unvented (bottom).
RESOURCES
(Note: some of these are free, others available for purchase)

HIGH-PERFORMANCE ASSEMBLIES (GENERAL)
- Illustrated Guide - R22+ Effective Walls in Residential Construction in B.C., BC Housing
- Field Test of Hygrothermal Performance of Highly Insulated Wall Assemblies, M. Fox, et al.
- Hygrothermal Analysis of California Attics, Building Science Corporation, Joseph Lstiburek and Christopher Schumacher
- Building Science Corporation case studies – in the search window, select “Designs That Work” as the document type, and the appropriate US climate zone (or “Any”)
- Building Science Corporation assembly guidance documents, e.g., “ETW: Walls - 2x6 Advanced Frame Wall Construction High R-Value” – in the search window, select “Enclosures That Work” as the document type and select “Any” as the climate zone
- Residential High Performance Walls, California Energy Codes & Standards

Bilding America Solution Center,

Construction Guide, Next Generation High Performance Walls, Climate Zones 3-5 Part 1: 2x6 Walls. Home Innovation Research Labs, V. Kochkin and J. Wiehagen

Several listed at Workforce Instructions for Standards and Efficiency (WISE), e.g., Illustrated Guide: R22+ Effective Walls in Wood-Frame Construction in British Columbia, Homeowner Protection Office, BC Housing

FRAMING

INSULATION
- The BuildingGreen Guide to Insulation – each insulation type analyzed, including thermal performance (R-value), response to aging, performance in extreme temperatures, off-gassing, global warming potential, health impacts, and other key factors
- Builder’s Guide to Continuous Insulation, Dow, Building Science Corporation

AIR SEALING
- Coldham & Hartman Architects continuous air barrier drawing
- Forty Years of Air Barriers, Building Science Corporation
- Passive House Design, Gonzalo Roberto
- Details for Passive Houses, Österreichisches Institut für Baubiologie und Bauphysik

INSULATION SPECIFICATIONS AND SCOPES OF WORK
- State of California Quality Insulation Installation specifications
- HERS fact sheet
- Ace Installation Residential, Energy Code Ace
- Energy Code Ace Quality Insulation Installation resources – a sample plan set including air sealing details, a QI note block to be added to architectural plans, and a contractor’s QI checklist
KEYS TO SUCCESS

START WITH THE END IN MIND

Set ZNE as a project goal from the very beginning, to calibrate your mindset (and your client’s). Then you’ll figure out how to do it and stay on budget!

Learn from the pioneers – research how other architects have tackled the ZNE challenge.

Pick a rock star team, and involve all of them from early in the design process – include a really great mechanical system designer, a really great energy modeler, and a really great general contractor! The ideal qualifications are:

- **Commitment** to the ZNE goal
- **Creativity** to go beyond business-as-usual
- **Experience** with high-performance/ZNE projects
- **Engagement** (“plays well with others”)

Focus on the enclosure – it’s the key to success with ZNE. Dedicate time to developing a comprehensive set of air sealing and air-vapor-water barrier continuity details that you can use over and over again.

Control what happens in the field as much as you can – develop a rigorous set of quality management specifications to include in your CDs (every time); include field diagnostics (blower door testing, duct blaster testing, infrared imaging, etc.) and commissioning.

Make a checklist of the new things you will need to accommodate now (and should plan for in the future), and their space needs: shading, PVs, more PVs for electric vehicles, mechanical equipment in conditioned space, etc.

HAVE FUN!
Climate Consultant 6.0

If you already have HEED running, you can install this new version in the same folder, and all your data will be preserved. Just hit Recalculate Old Projects to update each scheme.
Net Zero Energy Coalition
Every day in the USA
150,000 Architects
&
275,000 Civil
Engineers
are relying on weather
data that is
decades outdated.

Standard Practice: Historical Weather

WEATHER DATA RANGE NEEDED TO DESIGN ACCURATELY FOR THE LIFESPAN OF TODAY’S BUILDINGS
Standard Practice: Historical Weather

Chicago O'Hare Airport (ORD)

Weather Data Source
- Red: Historical Record
- Teal: Typical Meteorological Year (TMY)
- Beige: Future Weather Projection

© 2018 Arfa Aijazi, Center for the Built Environment, University of California Berkeley
Action has been voluntary. That is changing.

“Failure to act in the face of climate risk could result in legal liability.

…prevailing practices… [and] explicit standards.... are not the only factors that determine legal responsibility for… failing to act reasonably in the face of ascertainable climate risk.

…obligations can be heightened when considerations of public health or safety are at issue.
General Circulation Model

A simplified representation of a 3-d climate model. The model has columns of boxes covering the globe. On each timestep, the climate of a box and exchanges with adjacent boxes are calculated.

Features of climate calculated for surface boxes:
- Cloud physics
- Incoming and outgoing radiant energy
- Biosphere
- Ocean physics
- Sea ice
- Heat and moisture storage

Exchanges of atmospheric momentum, heat, and moisture.

Exchanges of oceanic momentum, salt, and heat.

{redrawn from a Met Office original}
Downscaling GCM to a Regional Climate Model

“MORPH” HISTORICAL DATA FOR FUTURE CONDITIONS

Statistical Downscaling

Shift Factors

Morphing Strategies
Climate Projection Uncertainty

Data: CDIAÇ/GCP/IPCC/Fuss et al 2014

Scenario categories
- >1000 ppm CO₂eq
- 720–1000 ppm
- 580–720 ppm
- 480–580 ppm
- 430–480 ppm

Emissions from fossil fuels and cement (GtCO₂/yr)

Historical emissions

2015 Estimate

net-negative global emissions

RCP8.5
3.2–5.4°C relative to 1850–1900

RCP6
2.0–3.7°C

RCP4.5
1.7–3.2°C

RCP2.6
0.9–2.3°C
Weathershift Outputs

Future Weather Data Options:

- TMY Format (Typical Year)
- AMY Format (Actual Year)
- XMY Format (Extremes)

Any location (using WeatherAnalytics)

Emissions Scenarios:
- RCP 4.5
- RCP 8.5

Future Time Period:
- 2020s (2011-2030)
- 2030s (2021-2040)
- 2040s (2031-2050)
- 2050s (2041-2060)
- 2060s (2051-2070)
- 2070s (2061-2080)
- 2080s (2071-2090)
- 2090s (2081-2100)

Percentile:
- 10th Percentile
- 50th Percentile
- 90th Percentile
<table>
<thead>
<tr>
<th>WeatherShift™ Tool</th>
<th>Application</th>
<th>Status</th>
<th>User</th>
</tr>
</thead>
</table>
| **WEATHER FILES** (.tmy/.epw) | 1) Cooling & Heating System Design
2) T24 Cost Effectiveness
3) ZNE Target Potential
4) Statewide Energy Demand and GHG from Buildings | IN USE | Architects
Building Engineers
City Planners |
| **RAINFALL INTENSITY, DURATION, FREQUENCY (IDF)** | 1) Flooding risk from rainfall
2) Drainage design (pipe and pump) for buildings, highways, and city streets | IN USE | Civil Engineers
Roadway Engineers
Stormwater Managers |
Average Monthly Data

- **Country**: United_States_of_America
- **Location**: Minneapolis
- **Emission scenario**: RCP 8.5
- **Warming percentile**: 95% (most warming)

Buildings and infrastructure built today will experience significantly different weather patterns over the course of the 21st century due to the impact of climate change. The WeatherShift™ tool uses data from global climate change modeling to produce EPW weather files adjusted for changing climate conditions. (EPW files contain hourly values of key weather variables for a typical year and are intended to be used for simulating building energy requirements.) The projected data can be viewed for three future time periods based on the emission scenario selected to the left.

*This site is preloaded with some EPW files provided to the public domain by the US Department of Energy. For all other shift locations – indicated by an * – an EPW file must be uploaded as the basis for shifting.*

Projected changes in typical weather conditions can be reviewed month by month for a number of weather variables.
Dan Brunn, AIA
Founding Principal, Dan Brunn Architecture
Designing for the Environment

• How do we get there?

• What are specific design strategies to ease achieving net zero? (Designing for energy conservation versus energy production for consumption)

• How to best analyze and understanding context and how to optimize passive design responses to conserve energy?

• Are there successful replicable residential precedents in Los Angeles area?

• Are there specific design responses for microclimates within L.A. Basin area? (and predicted changes of these microclimates)
Designing for the Environment

• How do we get there?
Designing for the Environment

• How do we get there?

1. **Target** setting
2. **Contract** to achieve the target
3. **Design** to the Target
4. **Build** to the Design
5. **Operate** to the Design
6. **Occupy** to the Design
Designing for the Environment

HVAC
- high performance glass
- high performance walls and envelope
- 65% effective heat recovery
- ground source heat pumps
- on demand controlled ventilation
- radiant slab heating / cooling

LIGHTING
- maximize daylighting
- daylight dimming
- lighting power

TENANT
- stair design to discourage elevator use
- cooling set point w/ radiant
- daytime office cleaning
- 80% laptop / 20% desktop
- phantom loads
- heating set point w/ radiant

BASELINE BUILDING

LIGHTING

TENANT

PV ROOF + FACADE
- 264,000 kwh/year supports
- 52,000 sf (10% safety)

= NET ZERO ENERGY

Zero Net Energy
PASSIVE SOLUTIONS

+ sun shading
+ heat exhaust heat
+ natural daylighting
+ fresh air intake
+ stormwater capture

Designing for the Environment
Designing for the Environment

Sun Shading
Overhang blocks direct sun during summer, allows direct sun during winter.

Passive Exhaust
Hot air exhausted through thermal chimney effect.

Natural Daylighting
Indirect sunlight reflected into space for maximum lighting with minimal heat gain.

Cross Ventilation
Air at lower level drawn through building.

Fresh Air Intake
Fresh air drawn in at lower level, stale air is drawn out.

Stormwater Capture
Rainwater collected in permeable pavers surrounding driveway.
Facade

PASSIVE SOLUTIONS
+ reduced glass at southern exposure
+ thermal
+ natural daylighting
+ fresh air intake
+ stormwater capture
Typical Suburban Home
Yard

- Backyard
- Front yard
Entry
Views

- Backyard
- Front yard

[Diagrams of yard views]
Bridge House Site

- Backyard
- Front yard

[Diagram of the Bridge House Site with different sections shaded and labeled.]
Moe Fakih, LEED AP (O+M, RATER, QAD), CCP, GBP, BPI, AT TECH, WELL AP
Vice President, VCA Green
AIA ZNE Seminar:
Tools & Implementation

Presented by:
Moe Fakih, LEED AP, CCP, BPI, WELL AP
Principal, VCA Green
System Selection

- Envelope
- Mechanical
- Lighting
- Plumbing
- Plug loads (not regulated)
- Renewable Energy
Residential Design Considerations

- Roof/Site Orientation for Solar
- Larger plenum, supply/return to accommodate new HVAC requirements
- Credits for controlled LED and battery storage
- Return on investment vs. first costs
- Energy model in SD/DD phases
- HERS Testing for Insulation

![Energy Use - Proper Insulation]

BAD ☹
GOOD ☺
Energy Modeling Tools

- Code Compliant Tools (Time Dependent Value - TDV)
 - EnergyPro
 - CBECC-COMM
 - IES
- Helpful Tools (Non-compliant)
 - Sefaira
 - Revit Energy Plugin
Impacts to Services

- Energy expertise – Key team member
 - Certified Energy Analyst
 - Engage early/Closer Coordination – Entitlement or SD/DD
 - Consider operational performance
- Align Details & Specifications
Prepared to Design for ZNE?

- **John Zinner, LEED Fellow** – Principal & Founder, Zinner Consultants
- **Lisa Matthessen, FAIA** – National Sustainability Design Director, HGA and Chair, AIA|CC Committee On The Environment (COTE)
 - **Dan Brunn, AIA** – Founding Principal, Dan Brunn Architecture
- **Moe Fakih, LEED AP (O+M, RATER, QAD), CCP, GBP, BPI, AT TECH, WELL AP** – Vice President, VCA Green

with moderator **Ric. Abramson, FAIA** – Founder & Firm Principal, WORKPLAYS studio*architecture
Prepared To Design For ZNE?

AIA
Los Angeles